
2019 Fall Mathematical Analysis III 1

Solution 1

1. A finite trigonometric series is of the form a0+
∑N

n=1(an cosnx+bn sinnx). A trigonometric
polynomial is of the form p(cosx, sinx) where p(x, y) is a polynomial of two variables x, y.
Show that a function is a trigonometric polynomial if and only if it is a finite Fourier series.

Solution Let

p(x, y) =
N∑

j,k, 1≤j+k≤N
ajkx

jyk

be a polynomial of degree N . A general trigonometric polynomial is of the form

p(cosx, sinx) =
∑
j,k

ajk cosj x sink x .

Plugging Euler’s formulas cosx = 1
2(eix+ e−ix), sinx = 1

2i(e
ix− e−ix), into this expression,

one has

p(cosx, sinx) =
∑
j,k

ajk

(
eix + e−ix

2

)j (
eix − e−ix

2i

)k
.

Collecting the terms into series in einx,

p(cosx, sinx) =
N∑

n=−N
cne

inx ,

which is a finite Fourier series.

Conversely, observe that cos 2x = cos2 x−sin2 x, sin 2x = 2 cosx sinx, by induction you can
show that cosnx and sinnx can be expressed as p(cosx, sinx) of degree N . Hence a finite
Fourier series f(x) = a0 +

∑N
n=1(an cosnx + bn sinnx) can be written as a trigonometric

polynomial.

2. Let f be a 2π-periodic function which is integrable over [−π, π]. Show that it is integrable
over any finite interval and ∫

I
f(x)dx =

∫
J
f(x)dx,

where I and J are intervals of length 2π.

Solution It is clear that f is also integrable on [nπ, (n+2)π], n ∈ Z, so it is integrable on
the finite union of such intervals. As every finite interval can be a subinterval of intervals
of this type, f is integrable on any [a, b]. To show the integral identity it suffices to take
J = [−π, π] and I = [a, a+ 2π] for some real number a. Since the length of I is 2π, there
exists some n such that nπ ∈ I but (n+ 2)π does not belong to the interior of I. We have∫ a+2π

a
f(x)dx =

∫ nπ

a
f(x)dx+

∫ a+2π

nπ
f(x)dx.

Using ∫ nπ

a
f(x)dx =

∫ (n+2)π

a+2π
f(x)dx

(by a change of variables), we get∫ a+2π

a
f(x)dx =

∫ (n+2)π

a+2π
f(x)dx+

∫ a+2π

nπ
f(x)dx =

∫ (n+2)π

nπ
.
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Now, using a change of variables again we get∫ (n+2)π

nπ
f(x)dx =

∫ π

−π
f(x)dx.

3. Verify that the Fourier series of every even function is a cosine series and the Fourier series
of every odd function is a sine series.

Solution Write

f(x) ∼ a0 +

∞∑
n=1

(an cosnx+ bn sinnx).

Suppose f(x) is an even function. Then, for n ≥ 1, we have

πbn =

∫ π

−π
sinnxf(x)dx =

∫ 0

−π
sinnxf(x)dx+

∫ π

0
sinnxf(x)dx .

By a change of variable and using f(−x) = f(x) since f(x) is an even function,∫ 0

−π
sinnxf(x)dx =

∫ π

0
sin(−nx)f(−x)dx = −

∫ π

0
sinnxf(x)dx,

one has

πbn = −
∫ π

0
sinnxf(x)dx+

∫ π

0
sinnxf(x) dx = 0.

Hence the Fourier series of every even function f is a cosine series.

Now suppose f(x) is an odd function. Then, for n ≥ 1, we have

πan =

∫ π

−π
cosnxf(x)dx =

∫ 0

−π
cosnxf(x)dx+

∫ π

0
cosnxf(x)dx .

By a change of variable and using f(−x) = −f(x) since f(x) is an odd function,∫ 0

−π
cosnxf(x)dx =

∫ π

0
cos(−nx)f(−x)dx = −

∫ π

0
cosnxf(x)dx,

one has

πan = −
∫ π

0
cosnxf(x)dx+

∫ π

0
cosnxf(x)dx = 0 , ∀n ≥ 0 .

4. Here all functions are defined on [−π, π]. Verify their Fourier expansion and determine
their convergence and uniform convergence (if possible).

(a)

x2 ∼ π2

3
− 4

∞∑
n=1

(−1)n+1

n2
cosnx,

(b)

|x| ∼ π

2
− 4

π

∞∑
n=1

1

(2n− 1)2
cos(2n− 1)x,
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(c)

f(x) =

{
1, x ∈ [0, π]
−1, x ∈ [−π, 0]

∼ 4

π

∞∑
n=1

1

2n− 1
sin(2n− 1)x,

(d)

g(x) =

{
x(π − x), x ∈ [0, π)
x(π + x), x ∈ (−π, 0)

∼ 8

π

∞∑
n=1

1

(2n− 1)3
sin(2n− 1)x.

Solution

(a) Consider the function f1(x) = x2. As f1(x) is even, its Fourier series is a cosine series
and hence bn = 0.

a0 =
1

2π

∫ π

−π
x2dx =

1

2π

x3

3

∣∣∣∣π
−π

=
π2

3
,

and by integration by parts,

an =
1

π

∫ π

−π
x2 cosnxdx

=
1

nπ
x2 sinnx

∣∣∣∣π
−π
− 2

nπ

∫ π

−π
x sinnxdx

=
2

n2π
x cosnx

∣∣∣∣π
−π
− 2

n2π

∫ π

−π
cosnxdx

= 4
(−1)n

n2
.

For n ≥ 1,

|an| = | − 4
(−1)n+1

n2
| ≤ 4

n2
.

We conclude that the Fourier series converges uniformly by the Weierstrass M-test.

(b) Consider the function f2(x) = |x|. As f2(x) is even, its Fourier series is a cosine series
and hence bn = 0.

a0 =
1

2π

∫ π

−π
|x|dx =

1

2π

x2

2

∣∣∣∣π
−π

=
π

2
,

and by integration by parts,

an =
1

π

∫ π

−π
|x| cosnxdx =

2

π

∫ π

0
x cosnxdx

=
2

nπ
x sinnx

∣∣∣∣π
0

− 2

nπ

∫ π

0
sinnxdx

= − 2

n2π
cosnx

∣∣∣∣π
0

= −2
[(−1)n − 1]

n2π
.

For n ≥ 1,

|an| = |2
[(−1)n − 1]

n2π
| ≤ 4

πn2
.

We conclude that the Fourier series converges uniformly by the Weierstrass M-test.
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(c) As f(x) is odd, its Fourier series is a sine series and hence an = 0.

bn =
1

π

∫ π

−π
f(x) sinnxdx =

2

π

∫ π

0
sinnxdx

=
2

nπ
cosnx

∣∣∣∣π
0

= 2
[(−1)n − 1]

nπ
.

Now we consider the convergence of the series
4

π

∑∞
n=1

1

2n− 1
sin(2n − 1)x. Fix

x ∈ (−π, 0) ∪ (0, π), Using the elementary formula

N∑
n=1

sin(2n− 1)x =
sin2(N + 1)x

sinx
,

one has that the partial sums |
∑N

n=1 sin(2n − 1)x| = | sin
2(N+1)x
sinx | ≤ | 1

sinx | are uni-

formly bounded. This also holds for x = 0, in which case |
∑N

n=1 sin(2n − 1)0| = 0.
Furthermore, the coefficients 1/(2n−1) decreases to 0. We conclude that the Fourier
series converges pointwisely by Dirichlet’s test.

(d) As g(x) is odd, its Fourier series is a sine series and hence an = 0. By integration by
parts,

bn =
1

π

∫ π

−π
g(x) sinnxdx =

2

π

∫ π

0
x(π − x) sinnxdx

= − 2

nπ
x(π − x) cosnx

∣∣∣∣π
0

+
2

nπ

∫ π

0
(π − 2x) cosnxdx

=
2

n2π
(π − 2x) sinnx

∣∣∣∣π
0

+
4

n2π

∫ π

0
sinnxdx

= − 4

n3π
cosnx

∣∣∣∣π
0

= − 4

n3π
[(−1)n − 1].

As

|bn| ≤
8

πn3
,

we conclude that the Fourier series converges uniformly by the Weierstrass M-test.

5. Let f be a π-periodic function which is infinitely many times differentiable on R. Show
that its Fourier coefficients are of order o(1/nk) for any k ≥ 1, that is, ann

k, bnn
k → 0 as

n→∞ for any k. Hint: Better use complex notation.

Solution. We use complex notation. Let ckn be the Fourier series of f (k). We have
ckn = (in)kcn for all n and k. Replacing k by k + 1, we have

|cn| ≤
|ck+1
n |

|(in)k+1|
≤ C

nk+1
,

where in the second step we have applied Riemann-Lebsegue Lemma to f (k+1). We con-
clude nk|cn| ≤ Cn−1 → 0 as n→∞.
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Remark A sequence {an} satisfies an = o(nσ) if

lim
n→∞

an
nσ

= 0 .

It satisfies
an = O(nσ)

if there is a constant C such that

|an|
nσ
≤ C , ∀ n ≥ 1 .

6. Let f be a 2π-periodic function whose derivative exists and is integrable on [−π, π]. Show
that its Fourier series decay to 0 as n → ∞ without appealing to Riemann-Lebesgue
Lemma. Hint: Use integration by parts to relate the Fourier coefficients of f to those of
f ′.

Solution Performing integration by parts yields

πan =

∫ π

−π
f(x) cosnxdx = − 1

n

∫ π

−π
f ′(x) sinnxdx .

Therefore,

π|an| ≤
1

n

∫ π

−π
|f ′(x)|dx→ 0 , n→∞ .

Similarly the same result holds for bn.

7. Use the previous exercise to give prove Riemann-Lebsgue Lemma. Hint: Every integrable
function can be approximated by C1-functions in appropriate sense.

Solution For every integrable function f , given ε > 0, there is a step function s such that∫ b

a
|f − s| dx < ε

2
.

On the other hand, it is geometrically evident (by smoothly connecting the jumps) that
for the step function s, given ε > 0, there is a C1-function g such that∫ b

a
|s− g| dx < ε

2
.

The desired result follows by putting these two estimates together.

Remark The second step can be described more analytically, but I prefer not to.


